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Exact power series expansions (through eight terms) in the time are derived for 
relaxation in the one-dimensional Ising model with nearest-neighbor 
interactions for a general rate parameter where the activation energy is a 
variable fraction of the energy required to break nearest-neighbor bonds. It is 
found that the qualitative nature of the relaxation is very dependent on this 
parameter, varying from nearly simple exponential decay (as with Glauber 
dynamics) for an intermediate value of this parameter, to an initial rate of 
change that is either much slower or faster than a simple exponential at the 
extremes of the range of variation of the parameter. The rate equations for the 
limit of rapid internal diffusion (internal equilibration) are integrated for several 
special values of the rate parameter. In general the internal equilibration 
approximation is not a good representation of the relaxation except when the 
relaxation is similar to Glauber dynamics. 

KEY WORDS:  Kinetic Ising model; cooperative relaxation; time power 
series. 

1. ~NTRODUCTION 

The present work is a continuation of an investigation into relaxation in 
lattice gases using exact time power series. Previous work (1) treated the 
adsorption (from a reservoir of constant activity) of hard particles to a 
one-dimensional lattice with nearest-neighbor exclusion. The present work 
treats the same model, but with nearest neighbor attraction of variable 
strength, i.e., the standard nearest-neighbor Ising model. We will use 
adsorption language, but the results can be easily translated to treat the 
one-dimensional magnet or conformational transitions in biopolymers. (2) 
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The one-dimensional kinetic Ising model has been treated by many 
workers. The seminal work was Glauber's (3) 1963 exact solution (for a 
special choice of transition probabilities). A review by Lacombe (4) is 
available for work prior to 1980. We refer here to only a few of the different 
approaches that have been taken to this subject. Obokata (5) extended 
Glauber's one-dimensional Ising model to the spin-one case by developing 
the time-dependent constant coupling approximation. Chui et  aL (6l applied 
Migdal-type renormalization-group calculations to the kinetic Ising model 
in one and two dimensions. Droz et  al. (7) considered the critical dynamics 
of one-dimensional disordered Ising models, while d'Auria and Rammal (8) 
showed that Glauber dynamics in the one-dimensional Ising model is not 
universal in a periodic model whose basic unit contains n arbitrary 
coupling constants. Bauer et  al. (9~ studied dynamic correlation functions in 
the one- and two-dimensional kinetic Ising models, and Schilling (~~ 
studied a one-dimensional Ising model with Glauber dynamics subject 
to slow, continuous cooling to zero temperature. Zaluska-Kotur and 
Turski (a~/ analyzed generalized Glauber kinetics for a one-dimensional 
Potts chain using direct space renormalization. Finally, we refer to Droz et  

al., (~2~ who studied the one-dimensional Ising model with spin exchange 
and spin diffusion. 

The general model is illustrated in Fig. 1. The solid dots represents 
sites on the regular one-dimensional lattice where particles from a reservoir 
at constant activity can bind. At equilibrium each nearest-neighbor contact 
is assigned the Boltzmann factor x [defined in (2.2)] while each particle is 
assigned an activity factor z. The assignment of the x and z factors 'is 
ilustrated in Fig. 1. The dynamics of the exchange between the lattice and 
the reservoir clearly is strongly determined by the number of nearest- 
neighbor bonds that are formed or broken on, respectively, adsorbing or 
deleting a particle. 

The general kinetic equation (master equation) for this model is 
described in Section 2. A simple derivation of a particular solution, due to 
Glauber, (3/ is given. More general rate constant schemes, for which no 
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Fig. 1. Schematic illustration of adsorption to a one-dimensional lattice (solid circles) from 
a reservoir. Every nearest-neighbor interaction contributes a factor x to the equilibrium 
partition function, while each particle contributes an activity factor z. 
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solution is known, are described in Section 3. The calculation of exact time 
power series is presented in Section 4. An approximate solution, based on 
the approximation of internal equilibration (rapid diffusion of particles 
on the lattice) is discussed in Section 5, where explicit solutions are also 
given for several special cases. The numerical analysis of the series and 
comparison with the approximation of internal equilibration are given in 
Section 6. In general one finds that the relaxation is not exponential over 
the whole time course as is the case with relaxation in Glauber's model (it 
can be faster or slower than simple exponential decay, depending on the 
rate parameters). It is also found that the approximation of internal equi- 
libration in general is quite poor. Higher-order approximations, discussed 
in Section 7, do, however, work quite well. 

2. KINETIC EQUATION 

In a lattice gas the rate of change of the density at a particular lattice 
site is obtained by summing over all reactions that either introduce or 
remove a particle at the given site. For the 1D lattice gas with nearest- 
neighbor interactions, the rate of change of density at a given site will be 
determined by the states of the neighboring sites and hence the rate of 
change at a particular site will depend on the probabilities of triplets of 
continguous sites centered at the site of interest. Letting 0 and 1 denote, 
respectively, vacant and occupied sites and Po0~, etc., the density of 
particular triplet configurations, then the rate of change of the particular 
density at a particular lattice site in the 1D Ising model is 

do 
-~ = (k~  Pooo + k ;-Poo~ + k ?  p~oo + k f Plol) 
dt 

-- ( koPmo+k;~po l l  + k ; p l l o + k [ p m )  (2.1) 

where k~ and k~- are, respectively, the rate constants for adding or 
deleting a particle, n bonds being formed or broken in the process. While 
(2.1) is a general relation for uniform and nonuniform systems (in the latter 
case one would require a subscript i on each density variable to identify the 
location in the lattice), we will treat only uniform systems, in which case 
p is independent of position on the lattice and as a consequence Pool = Ploo 
and Po~l = Pl~o. 

Two parameters are required to describe the system at equilibrium. 
One is the activity z and the other is the Boltzmann factor for the inter- 
action between particles on nearest-neighbor sites 

x = e-~/kT (2.2) 
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where e is the nearest-neighbor interaction energy. The relaxation process 
we will treat explicitly is for a sudden perturbation in the activity of the 
reservoir with which the lattice interacts from Zo to zoo at t = 0, at constant 
temperature. For  this perturbation the requirement of detailed balance 
imposes the following condition on the k's in (2.1): 

k~+ /k 2 = zoo x" (2.3) 

It is convenient to define the fugacity 

y = zx (2.4) 

since in the Ising model p = 1/2 when y = 1. Thus, if the fugacity of the 
reservoir suddenly jumps to y~  = z ~ x =  1, the density of the lattice will 
relax from its initial value Po to the final value p~ = 1/2. In the magnet, the 
case of y = 1 corresponds to zero magnetic field. 

Glauber (3) solved (2.1) for the case Yoo = 1 using the following specific 
rate constants: 

k ~ / k  o = (1 - 7)/(1 + 7) 

k ? / k ;  = 1 

k f / k  2 = (1 + 7)/(1 - ~) (2.5) 

where 

1 + 7  
x - (2.6) 

1 - y  

satisfies (2.3) at unit fugacity. Substituting rate constants (2.5) into (2.1), 
one obtains 

@ 
d t =  [(1 -7)Pooo + 2poo~ + (1 + 7)Plol ] 

- [ ( 1  + 7 ) P o l o  + 2po1~ + (1 - 7)P in ]  

Using the identities 

Pooo + Polo + Poo~ + Port = 1 -- p 

PlOl + P l l l  "Jr- P n o  + Ploo = P 

we find that Eq. (2.7) simplifies to 

d P = ( 1 - y ) ( 1 - Z p )  
dt 

(2.7) 

(2.8) 

(2.9) 
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Throughout  we will use the following density variable: 

p -p(t) 
3(t)  = (2.10) 

P~ - P o  

which varies between A(t= 0 ) =  1 and A(t = oe )=  0 (where Po and p~ are, 
respectively, the initial and equilibrium densities). For  Po = 0 and Po~ = 1/2, 
using (2.10), one readily integrates (2.9) to give 

A( t )=e  -2(1-~)' (2.11) 

Thus, the rate constants (2.5) result in simple exponential decay. 
Equation (2.1l) is the only known solution to the reduced master 
equation (2.1) and results only if the rate constants of (2.5) are used. The 
question thus naturally arises as to the nature of the solution of (2.1) when 
different rate constants are used. To this end, we consider next a more 
general class of rate constants than represented by (2.5). 

3. E X P O N E N T I A L  F O R M  FOR T H E  RATE C O N S T A N T S  

In the Ising model for equilibrium systems it is assumed that the 
energy of a particle is directly proportional to the number of particles 
immediately surrounding a given particle. A natural choice for the form of 
the rate constants is to assume that the activation energy for removing a 
particle is linear in the number of nearest-neighbor interactions (bonds) 
that have to be broken. If e ~ is the activation energy to break a single 
bond, then the assumption of linearity gives 

k~- = A [ e x p ( -  e~/kT)] ~ (3.1) 

where A is a constant. It is convenient to measure :s t as a certain fraction 
of the equilibrium bond energy 5. For  this purpose we define the parameter 
:~ (s t is positive and e is negative for attractive nearest-neighbor inter- 
actions) 

~t = -~e  (3.2) 

where 

0~<~< 1 (3.3) 

Defining 

~ = x  -~ (3.4) 
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then we have that Eqs. (3.1)-(3.4), with (2.3), yield 

k ~  = ~c n 

k + = z ~ ( x K )  n (3.5) 

taking the constant A in (3.1) as unity (this alters the time scale, but not 
the functional form of the relaxation). Utilizing the form of the rate 
constants given in (3.5) in (2.1) gives the specific reduced master equation 
we will treat: 

---Pt = z~ [Pooo + 2(x~:) Pool + (x~c) 2 P lo~ ] 

- -  ( P m o  q- 2KPOll -+-/r (3.6) 

At unit fugacity, taking the special case 7 = 1/2, one can write (3.6) 

do 
= a[(1 + 7)-1/3ooo q- 2pOOl q-- (1 q- 7)PlOl] 

dt 

- a [ ( l + 7 ) P o x o + 2 p o n + ( l + 7 )  ~Pm] (3.7) 

where 
a = x  1/2 1 _~_ 7 : xl/2 (3.8) 

For small 7 (x close to unity), (1 + 7) ~ 1 - 7  and (3.7) reduces to (2.8). 
Thus, the kinetic scheme used by Glauber, (2.5), has the following inter- 
pretation: the rate constants (rather than the activation energies) are linear 
in the number of bonds broken and formed for the special case e ++ = -e/2. 
We therefore anticipate that (3.6) will yield a solution that closely resem- 
bles (2.11) when we choose e ~  1/2. 

No analytic solution is known for (3.6). To obtain accurate 
approximate solutions, we turn, in the following section, to exact series 
expansions. 

4. SERIES EXPANSIONS 

We use the general method described previously o~ to obtain the 
required series. Consider a finite one-dimensional lattice of N sites. If p is 
a row vector whose general element is the probability of the nth lattice 
configuration, then the kinetics can be described by the set of first-order 
differential equations 

dp 
- - =  - -pW (4.1) 
dr 
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where W is the appropriate matrix of rate parameters. Taking the n th 
derivative of p evaluated at t = 0, one has 

d"--~P = ( -  1) n p(0)W n (4.2) 
dt n 

The net density is then given by 

p(t)  = p(t) .  v +IN (4.3) 

where v + is a column vector whose nth element is the number of particles 
in the nth lattices configuration. Expressing p(t)  as a power series in time 

p ( t ) =  ~ p(n)tn/n! (4.4) 
n = 0  

one has 

p(n) = N - 1 ( - 1 ) "  p(O) Why + (4.5) 

The size of the matrix required can be reduced to a minimum by 
considering a cyclic lattice. In that case, as shown by Runnels and 
Combs, (13~ one need consider only the irreducible set of ring configurations. 
For  example, for N =  3 one has the following irreducible set of ring 
configurations: 

O 1 1 1 

0 O 0 0 1 0 1 1 

(1) (2) (3) (4) 

(4.6) 

All other ring configurations can be obtained by rotation or reflection of 
the above rings. Using the general rate constants of (3.5) as illustrated in 
(3.6), one has the following 4 x 4 matrix W for the case N =  3 (where the 
tj element correlates the transitions between ring i and ring j ) :  (: 3z 0 0) 

1 l + 2 x ~ z  - 2 x ~ z  0 

- 2 ~  2K+ZX2K 2 --zx2~ 2 

0 --3K 2 3~ 2 

(4.7) 

The vectors p(0) (for the case of the empty lattice at t = 0 )  and v + are 

p(O)- - (1  0 0 0), v+ = 1 (4.8) 
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The matrix size (number  of rings in the appropr ia te  irreducible set) as 
a function of N is as follows: for N =  2-9 the M x M matrices have M 
values of  M = 2, 4, 6, 8, 13; 18, 30, and 46, respectively. The same matrix 
setups (same set of  irreducible ring configurations) can be used to calculate 
the equilibrium viral coefficients for the two-dimensional  Ising model. (14) 
One can obtain N - 1  exact virial coefficients for the infinite system from 
a finite lattice with a linear number  of  N sites. The same is true for the time 
problem; one can obtain the p(") for the infinite lattice th rough  n = N - 1  
from a finite ring of N sites. Thus, we can obtain th rough  p(8) exactly from 
the appropr ia te  46 x 46 matrix for N =  9. One notes that  the problem of 
obtaining virial coefficients for the two-dimensional  equilibrium problem is 
equivalent in difficulty to obtaining the coefficients in the time series for the 
one-dimensional  system. 

For  the general rate constants  given in (3.5) the p(") through n = 5 for 
the infinite system are 

p(O) = 0 

p( l )  ----- Z 

p(2)= _Z+Z2(_3 + 2 x K )  

p(3) = z + z2(6 - -  4Xtr 2) + z 3 ( l l  - -  12X~C + 2x2~c 2) 

p(4) = _ z + z2( - 9  - 2xrc + 8x~c 3) + z3( - 35 + 12x~c + 24xK 2 - 2x2~c 2 

+ 4X21r 3 - -  6X2tr 4) + Z4( --47 + 70xtr - -  26x2tr 2 + 4x3tr 3 - -  2x4tr 4) 

p(5) = z + z2(12 + 4x~c + 4xx 2 - 16x~: 4) + z3(76 - 24x~c 2 - 48xtr 3 

+ 2x2tr 2 + 12x2tr 3 - 50x2K 4 + 32x2~d + 6x2x 6) + z4(2i6 - 160xx 

- 144x~c 2 + 40x2x 2 + 16x2tr 3 + 46x2~c 4 _ 12x3tr 3 _ 4x3tr 4 _ 12x3~c 5 

q- 6x4K 4 -t- 4x4K 5 -t- 8x4K 6) + zS(227 - 424xx + 234x2x 2 

-- 48X3tr 3 -'1- 14X4K 4 -- 4xSx 5 + 2x6K 6) (4.9) 

The p(,0 th rough  n = 8 are given in the Appendix for the following special 
cases: e = 0  (~ :=1)  and c~=l  ( x = l / x )  with general final state (zoo); 
z ~ x =  1 (final state of p = 1/2) with general n. 

It is convenient,  in compar ing  relaxation curves, to scale time such 
that  for all cases one has 

( a A / d 0 , =  o = - 1  (4 .10)  
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For the special case of p(t = 0 )=  0 which we will use throughout, using 
(2.10), one finds the following general conversion formulas: 

t t Zoo 

P~ 

/z V 
\Z) p(") 

(4.11) 

5. THE L IMIT  OF INTERNAL EQUIL IBRATION 

Before turning to an examination of the nature of the series solutions 
outlined in the previous section, it is useful to introduce an approximation 
for which exact solutions can be obtained. Equation (3.6) is not soluble in 
general because of the presence of the triplet density terms. Writing 
differential equations for the triplet terms leads to still higher-order density 
functions, resulting in an infinite hierarchy of coupled differential equa- 
tions. However, in the limit of infinitely fast internal diffusion (internal 
equilibration) we can express the triplet densities in terms of the net density 
and hence obtain a closed form for our master equation. 

From (3.6) we know that at equilibrium 

z[Pooo+ 2Xt%ol +(xtc)2plol]=pmo+ 2tcpml +~c2pm (5.1) 

In the limit of internal equilibration, (5.1) will hold for all values of p 
during relaxation from P0 to Po~. The activity is well defined during the 
relaxation in this limit and is given by the same relation that connects z 
and p at equilibrium. Thus, formally we have 

z = z ( p ) ,  p = p( t )  (5.2) 

Using (5.1) in (3.6), one has 

,/n 
-~" = (zo~ -- z)[Pooo + 2x~CPool + (xK)2DlOl] 
dt 

(5.3a) 

or 

dp=(z  ) 
dt \ z 1 (Po~o+2Xpoll+x2p111) (5.3b) 

For the nearest-neighbor Ising model in one dimension one can write 
the probability of any particle configuration as a Markov chain, e.g., 

p( lOlO)=p(1)  P(IlO) P(OI1) P(IIO) 
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where P(alb) is the conditional probability that given a, b follows. Since 

p(ab) = p(a) P(alb) 

p(1) =/9, p (0)=  1 - /9  

one has the following relations for the triplet densities: 

[3 2 ll Pol/gXl /9o21 
/9111 = - - ,  P o l l  = , /9010 = - -  

P P P 

/9 ~ o /91o/9oo /9 ~o 
Plol /91oo = /gooo- 1 -  p' 1- /9  1- /9  

(5 .4)  

Substituting (5.4)in (5.3)yields 

d/9 ( z ~ - z ' ]  
d t  = \- f -----p~ (/900 + x~/9ol) 2 

= - z )  + 
dt \ z/9 / 

(5 .5)  

Using the conservation relations 

/900 + / 9 O l  = 1 - - / 3  
(5.6) 

Pol + Pll = P 

we can eliminate /goo and /911, respectively, from (5.5) in favor of /9ol. 
Utilizing (5.4) and (5.6) in (5.1) yields 

~ / 9 -  R ( 1  - / 9 )  
(5.7) /9Ol = R ( x ~  - 1) - (1 - ~:) 

where 

R = ( 5 . 8 )  

Use of (5.6) and (5.7) in (5.5) gives 

_ z , , x  ' 

d / 9 = ( z ~ - i  /9 1+ 1 
dt \ z x - - - f -  /9 

(5.9) 
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The activity as a function of p is readily calculated from the partition 
function for the equilibrium system. (Is) One has for a system of N particles 
on a cyclic 1D lattice 

-~= Tr W N 

where W is the appropriate transfer matrix 

For  large N, the average properties of the system can be calculated from 
the largest eigenvalue of W, 21. The relation between the density and the 
activity is then obtained in the standard fashion 

81n 21 
P= 81nz  

One finds 

1 (1 - 2p) z F 4 x p ( 1 - p )  ,~/2 
z(p)= x 2x=p(l_p)L-d-~o)~ +lj -I!A (5.10) 

Use of (5.10) in (5.9) yields a differential equation for p(t) in closed form, 
i.e., 

dp 
dt - f ( P )  (5.11) 

In the limits ~ = 0 (~ = i)  and c~ = 1 (~ = 1/x) use of (5.6) in (5.5) gives 
the special cases 

dp= ( ~ _  & 1)p (~=o) 

dp ~7=(z~-z)(1-p) (c~= 1) 
(5.12) 

These same results can be obtained by using a more general argument. '16) 
We point out that the simplicity of (5.12) is deceptive, since one must use 
(5.10) to give z as a function of p. 

Equations (5.12) can be integrated explicitly. We will give here the 
results for the special case of p 0 = 0  and p ~ = l / 2  (unit fugacity. 
yoo = Zo~X = 1). In addition, we will utilize the scaled time of (4.11), i.e. 
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t '= (2/x)t; for simplicity we will drop the prime on t. In this case (2.10) 
becomes 

A = 1 - 2 p  (5.13) 

Substituting (5.13)in (5.10), one obtains 

1 2A [ x - - ( x - - 1 ) z ~ 2 ] l / 2 - - z ~  

Z = X X 2 1 - -  A 2 (5.14) 

Using (5.14) in (5.12) gives 

f J l + d  
1 A(1-a2A2) 1/2- f~ IdAA t A2 b dA - 2b --- b 

1 

f ~ 1 --A 
i 3 ( 1  - a ~ / 2  - 3 ~ b  d 3  = - tb  

(~=0) (5.15) 

(~= 1) (5.16) 

where 

a = ( X - l ~ / 2  
\ x /  ' 

1 
b - xi/2 (5.17) 

Defining 

~(l+b) 
A(A) = 

1 "t- ( 1  - -  a2A2)  1/2 

B(A ) = �89 + a2A +b(1 -a2A2) 1/2] 

C(A) = a(cos -1 a A -  cos -1 a) 

D(A)= b[(l_a2A2)~/Z_bA ] 

(5.18) 

then the integrated forms of (5.16) and (5.17) are 

A(A) B(A)b D(A)b eC(a)=e -~/b (~=0)  

A(A) B(A)b e-C(a)=e -tb (~=1)  

(5.19) 

(5.20) 

The complexity of (5.9) and (5.20) when compared to (2.11) is striking. 
As A --+ 0, one has 

1 2A 
Z ~ X X 3/2 (5.21) 



One-Dimensional Kinetic ising Model 947 

and 

A ( t ) ~ e  -~/~ (5.22) 

Using (5.21) in either of equations (5.9) and using the limit 

I d A  1 
lim . . . . .  (5.23) 
~--,oA dt z 

one finds 

1 1 (1 +xl /2-=~ 2 
z - x 1/2 \ i -+ 7 2 ] (5.24) 

One then has the following asymptotic forms for (5.19) and (5.20) as 
A ~ 0 :  

A(t) ~ exp( - tx /~)  (c~ = 0) (5.25) 

A ( t ) ~ e x p ( - t / x f ' s  ) (c~= 1) (5.26) 

6. N U M E R I C A L  S T U D I E S  

In all of the numerical studies reported in this section the initial state 
will be the empty lattice and the final state will be the half-filled lattice 
(p~ = 1/2, yoo=zoox= 1). Using the variable A defined in (2.10), which 
has the special form given in (5.13) for the above boundary conditions, we 
define a time-dependent relaxation parameter k(t) as follows: 

A(t) = e -'k(t~ (6.t) 

A(t) has the properties that A(t = 0 ) =  1 and A(t = oe )=  0. Using the scaled 
time introduced in (4.11), one has 

k(t  = 0) = 1 (6.2) 

For  simplicity we will drop the prime on t and understand that the scaled 
time is being used. 

If one scales the time in a similar manner for the Glauber solution of 
(2.11), one obtains 

A = e- ' ,  k(t) = 1 (6.3) 

1.e., one has simple exponential decay with k = 1 independent of t. This 
result will serve as a reference for other choices of rate constants. They will 
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all be scaled so that  k ( t = 0 ) = l ;  if k ( t = o o ) > l ,  then the relaxation is 
faster than simple exponential  decay; if k(t < oo ) < 0, then the relaxation is 
slower than simple exponential  decay. 

We will use the exact solution of (4.1) for finite rings of N lattices sites 
as a comparison.  The solution of (4.1) can be expressed in terms of the 
eigenvalues and eigenvectors of the appropr ia te  matrix W. One has 

M 

p ( t ) =  ~ a,e -~"` (6.4) 
n = l  

The size M of the matrix required for various N is given in Section 4. One 
of the eigenvalues, which we will take as 2M, must  be zero in order  that 
p( t= oo) have a finite value. Since A(t= o o ) = 0 ,  one has 

M 1 

A ( t ) =  ~ a,e -~"t ~ 0 (6.5) 
n = l  (t ~ co) 

The long-time behavior  of A(t) will be dominated  by the smallest nonzero  
eigenvalue 21: 

A(t),,~ale -;'~t (6.6) 

Using (6.2) to scale time so that k(t = 0 ) =  1, one has 

lira 2 1 ( N ) = k ( t =  oo) (6.7) 
N--~ oo 

That  is, the value of 21 extrapolated to very large ring size gives the 
limiting (long-time) value of  k(t). 

The values of 21(N) for N =  2-9 for e = 0 ,  1/2, 1 are shown in Table I. 

Table I. The Smallest Eigenvalue h I Describing the Relaxation in 
Finite Rings of Lattice Sites As Described in Eq. (6.6) ~ 

N c~=0 ~= 1/2 ~= 1 

2 1.479 1.000 0.370 
3 1.481 0.911 0.370 
4 1.495 0.892 0.374 
5 1.507 0.886 0.377 
6 1.514 0.885 0.378 
7 1.517 0.884 0.379 
8 1.519 0.884 0.380 
9 1.520 0.884 0.380 

The quantity 21 is given as a function of ring size N and rate parameter ~; the data shown 
are for the case x = 4 with z~x = 1 (unit fugacity with p~ = 1/2). 
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One sees that the values of 21 approach a limit quickly. In addition, we 
have calculated the complete time dependence of p(t) given in (6.4) using 
all of the eigenvalues for N = 7, 8, and 9; one finds that the behavior of p(t) 
in these three cases is virtually identical. Thus, we will take the behavior of 
p(t; N= 9) as a very good approximation of the behavior of the infinite 
system. 

It is convenient to introduce the following Euler transform, which 
maps the entire t axis from t = 0  to t =  +oo onto the unit line, s = 0  to 
s = l :  

t S 
(6.8) S = l +  t, t = l _  s 

We then have 

(6.9) 
1 at t=O (s=O) 

k(s)= 21(N= oo) at t =  oo (s=  1) 

By observing the values of 2 t ( N = 9 ) ~ k ( s =  1) in Table i, one sees 
that the rate parameter e has an important effect on the qualitative nature 
of the relaxation; for e = 0  one has k(1)>  1, so the relaxation speeds up 
relative to simple exponential decay; for c~=l one has k ( 1 ) < l ,  so the 
relaxation slows down relative to exponential decay. For the case 7 = 1/2, 
k (1)~  1, so the relaxation is close to simple exponential decay, that is, it 
is similar to, but not exactly the same as, the relaxation for Gtauber's 
model, (2.5). 

We will now use the eight-term exact series expansions given in the 
Appendix to estimate the function k(s) for various c~. Using the transforma- 
tions (4.11) and (6.8), we can construct the first seven terms (the initial 
term is scaled to unity) in the series 

k(s) = 1 + ~ b,s n (6.10) 
n = l  

We can use the first seven b~ to form the (L J)  Pad6 approximant (17) to 
k(s ) ,  

I Amsm 1 + Z m = l  
k ( s )  ~- p ( I ,  j )  = 1 1 

-l- ~.m= 1 Bm Sm 

I+J 
= 1+ ~ b.s"+ b'ns" (6.1t) 

n = l  n ~ l + J + l  



950 Poland 

where the b', are estimates of the remaining coefficients in the series. In our 
case, I + J = 7. 

The mean of the values of the (3, 4) and (4, 3) Pad6 approximants 
(they are virtually identical) to k(s) are shown in Fig. 2 for e = 0, 1/2, and 
1 (open squares); the curves with no symbols are the values of k(s) 
obtained from p(t; N = 9) using (6.4). One sees that the Pad6 approximants 
to the seven-term series for k(s) work extremely well, there being only a 
small discrepancy between the series result and the exact result for N =  9. 
The relaxations curves A(t) obtained by the two methods are super- 
imposable over the entire s axis (zero to infinite time). Thus, the use of 
Pad6 approximants  to k(s) for cooperative relaxation processes is a reliable 
practical tool in this case. 

In Section 5 we obtained integrated forms for the relaxation in the 
limit of internal equilibration (very rapid internal diffusion on the lattice) 
for c~ = 0 and ~ = 1. The curves for k(s) in the limit of internal equilibration 
are compared with the results obtained when there is no internal equilibra- 
tion (the case illustrated in Fig. 2) in Fig. 3. The solid squares are the 
points for the case of no internal equilibration (using the data for N =  9 
from Fig. 2) and the open symbols give the results of Eqs. (5.19) and (5.20) 
(with the appropriate  scaled time). One sees that in general 

~equ i l ib ra t ion  ~> knonequ i l i b r a t i on  (6.12) 

that is, the approximation of internal equilibration gives an upper bound 
to the rate of relaxation: equilibration makes the system relax faster. For  

K(S) 

2 . 0 0  

1 . Y 5  

1 . 5 0  

1 . 2 5  

t . 0 0  

0 . 7 5  

0 . 5 0  

0 . 2 5  , 

0 . 0 0  i i 
0 . 0  0 . 2  0 . 4  

o : = 0  

o : = 1  - - ~ " ~ :  

i = 
0 . 6  0 . 8  1 . 0  

s 

Fig. 2. The relaxation function k(s) defined in Eqs. (6.1), (6.8), and (6.9). The examples 
illustrated are for x = 4 and various values of e. The open squares show the points for Pad6 
approximants to the exact series for k(s). The solid curves with no symbols are the exact 
curves for the finite ring of N = 9 sites. 
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2 . 0  

1.5- 

re(S) 

1 . 0  

0 _ 5 '  

O.O 

,.o ~ ~ ~ ~ 1 . .  

S 

Fig. 3. The function k(s) as in Fig. 2 for the case of x =4. The solid squares are the Pad~ 
approximants shown in Fig. 2, while the open symbols are the integrated forms of (5.19) and 
(5.20) for the case of internal equilibration. 

the case of c~= 1/2 (not shown) the two cases, equilibration and no 
equilibration, are virtually identical. For  the cases c~ = 0 and cr = 1 the 
approximation of internal equilibration does not offer a very good 
approximation to the relaxation process in the abscence of internal 
diffusion. 

For  the case of internal equilibration, k(t= oe) is the quantity 1/r 
given in (5.24). One has 

k(s--  1) = x/-x 

k ( ~ = l ) = ~ (  1 

1 
k(s= 1 ) = ~ x  x 

(~=0) 

1//2',~/x "~2 (o~ = �89 (6.13) 
+ 

(~=1) 

For x = 4  one has k(s= 1)=2 ,  8/9, and 1/2 for :~=0, 1/2, and 1, 
respectively. Again, the nature of the relaxation is seen to depend in a 
strong fashion upon the value of ~. 

In the limit of internal equilibration (which we will refer to simply as 
the equilibration case) p(t) can also be expressed as a power series in the 
time, i.e., using Eq. (4.4). For  the initial condition p(O)= 0, p(1), and p(2) are 
exactly the same as those quantities for the nonequilibrium case given in 
(4.9). The two cases begin to differ at the p(3) term, which is given below 
for both cases: 

S22/59/3-4-27 
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p(3~ = z + z2(6 - 4xK 2) -? z3(11 - 12xtc + 2x2K 2) 

(nonequilibration) 

p(3) = z + z2(6 - 4x - 8x~c) + z3(11 + 4x - 1 6 x t c k  - 4 x 2 x  + 6x2tr 2) 

(equilibration) (6.14) 

One can see why this is so from the example of the 3-site cyclic lattice 
illustrated in (4.6). Internal diffusion, motion of a particle within a ring 
configuration, does not switch the identity of any of the rings: motion in 
ring (2) gives ring (2), motion in ring (3) gives ring (3). Since the case of 
N =  3 gives through p(2), one finds that p(1) and p(2) are independent of the 
diffusion process. For  rings with four or more sites this is not so, internal 
diffusion allowing switching between different ring configurations, and thus 
in that case internal diffusion does effect the relaxation process. Since the 
coefficients through p(2) are identical for equilibration and nonequilibra- 
tion, one has the result that the relaxation processes for the two cases are 
very similar at short times ( s ~  0). From Fig. 3 we see that at long times, 
the relaxation is quite different in general for the two cases. 

To understand the influence of internal diffusion on the relaxation 
process more fully, we will incorporate internal motion, hopping of 
particles to unoccupied nearest-neighbor sites, explicitly into the kinetics 
(the case of equilibration that we have already treated is for the limit of an 
infinite rate of internal diffusion). There are three different basic diffusion 
reactions in our model (the states that are switched are underlined): 

r 

0 0 1 0+-~0 1 0 0 
r 

r x l  - 

0 1 0 1  ~-~ O 0 1 1  
r x - ~  

r x  1 - 2 ~  

l l O 1  ~ 1 0 1 1  
r x  ! 2a 

(6.15) 

where r is the basic rate parameter for diffusion and the x ~ terms [follow- 
ing Eq. (3.4)] are factors reflecting the activity energy for breaking and 
forming bonds constructed such that microscopic reversibility is satisfied. 
Incorporating the diffusion reactions into the matrix W of (4.1), one can 
study the behavior of the smallest eigenvalue, )-1 = ko~, as a function of r, 
the basic rate of diffusion. The data are shown in Table II for N = 4, 5, and 
6 and for ~ = 0, 1/2, and 1 (the eigenvalues are independent of r for N = 2 
and N = 3). The points at r = oe for finite N were obtained by extrapolating 
the values of 21(r) as a function of 1/(1 + r) to r = oo; the points at r = ov 



One-Dimensional  Kinetic Ising Mode l  953 

Table I1. The Smallest  Eigenvalues of the Matr ices W for  Various N and a 
As a Function of the Rate of Internal  Di f fusion r a 

Smallest eigenvalue 

N r = 0  r = l  r = 2  r = ~  

:~ = 0 4 1.495 1.513 1.521 1.543 
5 1.507 1.537 1.552 1.590 
6 1.514 1.551 1.572 1.632 
oo 1.520 - -  - -  2.000 

= 1/2 4 0.892 0.892 0.892 0.892 
5 0.886 0.887 0.887 0.887 
6 0.885 0.885 0.886 0.886 
oo 0.884 - -  - -  0.889 

c~ = 1 4 0.374 0.378 0.380 0.387 
5 0.377 0.384 0.388 0.399 
6 0.378 0.388 0.393 0.408 
co 0.380 - -  - -  0.500 

a Eq. (6.15). The special case treated is for p(O)= 0 and unit fugacity with x = 4; the time has 
been scaled using (4.11). 

a n d  N =  oo are  g iven  by Eq.  (6.13). F o r  the case of  ~ = 1/2 one  sees tha t  21 

is ve ry  insens i t ive  b o t h  to  r ing size and  ra te  of  i n t e rna l  diffusion.  F o r  c~ = 0 

a n d  ~ = 1 the  va lue  of  r does  inf luence  21, bu t  the  ra te  o f  c h a n g e  of  21 wi th  

r is n o t  d r a m a t i c ;  in b o t h  cases the  inf in i te- r  l imi t  ( l imit  of  in t e rna l  

e q u i l i b r a t i o n )  has  n o t  been  r e a c h e d  for the  f ini te  va lues  o f  r used  in 

T a b l e  II. 

In  Eq.  (6.12) we p o i n t  o u t  tha t  

2 1 ( r =  ~ ) > 2 1 ( r = 0 )  (6.16) 

I t  is t rue  in gene ra l  2 tha t  for  all  o f  the  e igenva lues  of  W for  f ini te  r 

2 i ( r  ) > ~i(r  = 0) (6.17) 

O n e  thus  n a t u r a l l y  expec t s  t ha t  the  sys tem wi th  f ini te  r will  a lways  re lax  

fac ter  t h a n  the  sys tem wi th  r = 0, i.e., p(r, t )>  p(r = O, t). This  tu rns  o u t  to 

be n o t  necessa r i ly  the  case, s ince (6.17) p laces  no  c o n d i t i o n s  on  the  a n coef-  

2 The general matrix W is the sum of a matrix for exchange and a matrix for diffusion. Since 
both of these matrices are nonnegative definite, each eigenvalue of W is larger than the 
corresponding eigenvalue of the matrix for exchange alone. See Bellman. (18) 
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ficients in (6.4). To illustrate this point, we can use the p(n) in (4.9) and 
(6.14) to obtain the difference 

p(r  = oo ) - p (r  = O) = Ct3/n! + . . .  (6.18) 

One finds that (with the boundary conditions p(O)=0, zoox = 1) 

C > 0  if ~ > ~ *  

C =  0 if c~ = e* (6.19) 

C < 0  if c~ < c~* 

where 

[-x(1 + x)]/ln e* = l n  1_ ~+~5  j /  (6.20) 

Thus, in the range 0 < a < e* the relaxation for the case of nonequilibration 
will initially be more rapid than the case of equilibration. For x = 1, 2, 3, 
and 4 one has c~*= 0.5, 0.263, 0.166, and 0.117, respectively. Of course, as 
t ~ oo the condition of (6.16) guarantees that eventually the relaxation for 
the case of equilibration will be more rapid than that for nonequilibration. 
The effect is very small; in Fig. 3 the k(s )  curves actually cross near s--0. 
The same effect is found in two and three dimensions; in fact, it turns out 
that (6.20) also holds for the square and cubic lattices. 

Another special value of e of interest is that determined by the 
conditions 

( d k / d s ) s = o > O  if ~ < 7 '  

( d k / d s ) s = o = O  if ~=c~' (6.21) 

( d k / d s ) s = o < O  if ~ > a '  

Using (4.9), one finds (again with p~o~= 0 and unit fugacity) 

cd = In ( l - ~ x ) / l n  x (6.22) 

Since the value of a' is determined by p(2), (6.21) and (6.22) apply for both 
cases of equilibration and nonequilibration. For x = 1, 2, 3, and 4 one finds 
~ '=0.5,  0.0415, 0.365, and 0.339, respectively. The quantity c( indicates 
whether the relaxation is faster or slower than simple exponential decay: 

c~ > ~': relaxation slows down 
(6.23) 

c~ < ~': relaxation speeds up 
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7. OTHER CLOSURE APPROXIMATIONS 

Various closure approximations have proved useful in describing the 
kinetics of conformational changes in biopotymers. (19) Here we explore 
some closure schemes in the context of the lattice gas model. 

In our basic kinetic equation (2.1), d p / d t  is expressed in terms of 
triplet densities. In the limit of internal equilibration we used (5.4) to 
express the triplet densities in terms of doublet densities and ultimately 
gave the doublet densities in terms of the singlet density, giving an equa- 
tion of the form of (5.11) just in terms of the single variable p. As seen in 
Fig. 3, the limit of internal equilibration is not a very good approximation 
for the nonequilibration case (except when e ~  1/2). In this section we 
examine higher-order closure approximations. 

If one does not use (5.4) to eliminate triplet densities, then one must 
introduce differential equations for the rate of change of triplet densities. 
One then has 

.dn 
= z(Pooo + 2x~cPool + x21c2Pmt) - (Poxo + 2~:po,1 + ~cePm) 

dt  

dp oo 
dt  - -z(2pooo + 2XXPoo~) + (Polo + 2KPo11) 

d•ooo 
- - z ( P o o  o + 2pooo o + 2x~cp0001) + (P0,0 + 2poloo + 2~cPHoo) 

dt  

4 ~  
~'"a~______z = z(x2~c2p~ol + 2xZ~Zpj~ol  + 2x~:p~oo) - ( tcZpl j l  + 2/r + 2~cP1~oo) 

dt  

(7.!) 

Using the next higher-order level of closure than (5.4), one has (closure at 
triplets) 

P iykl --- P ijk P jkl/ P jk (7.2) 

With (7.2), the quartet densities in (7.1) can be expressed in terms of 
triplets and doublet densities. Using the conservation relations (valid for 
all t) 

~ p ~ = l  
i 

~ p o . = p i  
Y 

P ijk = P ii 
k 

(7.3) 
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and the symmetry conditions (assuming homogeneous conditions) 

Pij = Pji, Pok = Pkj~ (7.4) 

there are four independent variables, which we take as p, Po0, Pooo, and 
p,~l, the differential equations for which are given in (7.1). 

Using (7.2)-(7.4), one has that Eqs. (7.1) are four coupled nonlinear 
differential equations in four variables and can be integrated numerically. 
For a general species i with density pC one can introduce the appropriate 
departures from the equilibrium state 

3,(t) = [pi(t= oo)-p,(r 0o) (7.5) 

As t ~ o% all of the Ai( t )  go to zero and the final relaxation to equilibrium 
is described by the linearized equations 

4 

dA---2 = - ~ wij Aj  (7.6) 
dt j= l  

The smallest eigenvalue )~1 of the 4 x 4 matrix (w~) gives the limiting value 
of k ( t )  of (6.1) 

21 =koo (7.7) 

using the scaled time of (4.11). 
The next highest order approximation 

quartets, 

P ijklm = P oktPjklm/Pjkl (7.8) 

would involve closing at 

and one would need the differential equations for the quartets appearing in 
(7.1). With the appropriate conservation relations, one finds that with 
quartet closure there are seven independent variables. Linearization of the 
differential equations gives a 7 x 7 matrix, the smallest eigenvalue of which 
gives koo of (7.7). 

Table III shows 21 for doublet, triplet, and quartet closure; the case of 
doublet closure is the limit of internal equilibration, (5.24). Also shown are 
the )~1 values obtained from the extrapolation of the eigenvalues for finite 
size as given in Table I. The values shown are for various values of c~ and 
x and are all for the case p(0)= 0 and unit fugacity. From the data given 
in Table III one finds that both triplet and quartet closure give an 
extraordinarily good estimate of koo for the exact nonequilibrium limit. 
Since triplet closure gives as good an estimate as quartet closure, it appears 
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Table III. The Smallest Eigenvalue hi for the Linearized Set of Equations at 
Various Levels of Closure a 

c~ Doublet Triplet Quartet No closure 

0 2.000 1.523 1.521 1.520 
1/2 0.888 0.884 0.884 0.884 
1 0.500 0.387 0.380 0.380 

a The data are for the special case p{0)= 0 and unit fugacity with x = 4. The data in the no 
closure column are the extrapolations of the data for finite rings given in Table I for the 
infinite ring case. 

that the requirement for a good approximation to the nonequilibration 
case is to retain correlations of at least the order appearing in the basic 
kinetic equation (2.1), in this case, triplets. 

8. D I S C U S S I O N  

We have seen that the parameter  ~ defined in (3.2)-(3.4) greatly 
influences the nature of the relaxation in the one-dimensional Ising model. 
For c ~  1/2 the relaxation is approximately simple exponential decay 
[closely approximating the behavior of Glauber 's  model, (2.5)-(2.11) and 
(3.7)-(3.8), which is exactly simple exponential decay] and in that case the 
limit of internal equilibration is a good approximation to the case of no 
internal diffusion. For  c~ = 0 the decay is much faster than exponential 
decay, while for c~ = 1 it is much slower. For  both cases the limit of internal 
equilibration is a poor  approximation to the relaxation for the non- 
equilibration limit, although closure at triplets or quartets offerts a very 
good approximation. 

Since the parameter  c~ plays such an important  role, it is useful to 
review the physical meaning of this parameter. Consider the reaction where 
a particle is removed from a site next to an occupied site with the 
concomitant breaking of a bond, 

0 ! 1 - -*0  0 1 (8.1) 

If ~ = 1, then the activation energy is the entire bond energy bond energy 
and reaction (8.1) will be very slow. On the other hand, if c~=O, then the 
activation energy is a minimum (zero) and reaction (8.1) will have its 
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maximum speed. Considering the reverse process, i.e., adding a particle 
from the reservoir 

z x l  -~x 

0 0  1 ~ 0 1 1  (8.2) 

then if ~ = I this process again will be relatively slow, while for ~ = 0 the 
process has a maximum rate: bond formation is highly favored-- the  
particles are literally sucked onto the lattice from the reservoir. (which is 
why the relaxation speeds up in this case--as  soon as at few particles are 
down, they pull in more). Considering both reactions together, one has 

z x  1 

0 0 5  *-~ 0 1 5  
x - a  

k + Z X  1 c~ 

z x  (8.3) 
k -  x -~ 

that is, the ratio of the forward and reverse rate constants gives the equi- 
librium constant for the reaction, which in this case is simply z x  (one adds 
a particle and forms a bond). 

Physically, the limit c~ = 0, with zero activation energy, is unrealistic, 
the more realistic case being when the activation energy is a significant 
fraction of the total bond energy, say c~ = 3/4; there is nothing special physi- 
cally about  the value e = 5/2 except that it is probably more realistic than 
the value ~ = 0. 

In our numerical examples we have used the value x = 4, representing 
a mildly cooperative system (for x = 5 one would have independent par- 
ticles and simple exponential decay). If instead of the lattice gas that we 
treated, we consider conformational transitions in biopolymers, we have 
the following conversion of symbols: 

s = z x ,  a =  5 / x  (8.4) 

where a and s are the standard Zimm-Bragg  parameters describing the 
cooperative helix-coil transition. (15'2~ A conformational transition from 
helix to coil takes place when s ~ 5 (the analog of unit fugacity in the 
lattice gas or zero magnetic field in the magnet), the transition being more 
cooperative the smaller a. Now in biopolymers a may lie between 10 -2 and 
50 - 4  (depending on the system), corresponding to x = 500 and x = 50,000 
in lattice gas language. Figure 4 shows several relaxation curves for several 
large values of x and several values of e; the curve for x = 1 (simple 
exponential decay) is shown for comparison. All of the curves in Fig. 4 
have the same initial slope [using the scaled time of (4.51)] and hence they 
illustrate how dependent the nature of the relaxation is on x and e. The 
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l.O0 ~ 

x=lO0 

A o.~s c~=~-~~s~ 

0.50 x~~e~=I 
0.25 t 
O.00 | "- ~ , m 

O.O 0.5 1.0 1.5 2.O 

Fig. 4. The function A(t) of (2.10) for various x and ~ values. The time is scaled, (4 . i l ) ,  such 
that all the curves will have the same initial rate of change at t = 0. The curve markedc x = 1 

corresponds to simple exponential decay. 

behavior of k(s) for x = 1, 10, and 100 for c~-- 1 is shown in Fig. 5, which 
again illustrates the very large deviations from simple exponential decay in 
this model. 

At unit fugacity (Po~ = 1/2) one has a simple relation(15! for the 
average length of a sequence of particles on contiguous lattice sites: 

( L )  = 1 + , , ~  (8.5) 

At x = l  one has ( L ) = 2 ;  as x increases (reflecting the influence of 
attractive bonding at low temperature) the particles tend to coalesce into 

1.2 ] X=[ 

~'(s) o.~o_~~ 
o.~ , ,x=100 
O.O j 

0~0  0_2 0.4 0.6 0.8 t.O 

Fig. 5. The function k(s) for the case of c~= 1 for various values of x. The case x =  1 
corresponds  to simple exponential decay. 
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longer and longer sequences. One might thus expect that the finite-ring-size 
extrapolation used in Table I would depend on the value of ( L )  relative 
to N: if ( L ) <  N, then the extrapolation works well, but if ( L ) > N ,  then 
it will not. Apparently this is not so: the extrapolation seems to work well 
at small N (of the order of 2-9) even for large x (hence large ( L ) ) .  The 
Glauber model offers an explanation: Eq. (2.11) holds exactly for finite 
cyclic rings independent of N. 

In a previous paper we studied relaxation in the one-dimensional 
lattice gas with nearest-neighbor exclusion. In that case we found that the 
radius of convergence of the function 

dp/dt = V(p) (8.6) 

was the density of the final equilibrium state. This meant that one could 
not expand about the final equilibrium state, i.e., the function f (A )  

dA/dt = - k ~ A  + f (A)  (8.7) 

was nonanalytic. This was consistent with the following asymptotic form 
for A: 

A(t)~  At-~ e - k~  (8.8) 

When one forms k(s) for (8.8) one finds that k ( s ) ~  k~ as s ~ 1 with a 
slope of minus infinity (i.e., the function hooks down into the point koo 
with infinite slope). As seen in Fig. 2, there is no tendency for k(s) to hook 
as s ~ l .  

We cannot tell if the function F(p) is singular at the final density in the 
nearest-neighbor Ising model with attractive interactions because there is a 
very strong singularity on the negative p axis very close to the origin. From 
(5.10) one sees that the equilibrium function z=z(p)  has a singularity at 
p = 1 (close packing) and another singularity associated with the square- 
root term. The square-root term can be rearranged to read 

x - 1  
(1 - g)1/2, g = (1 - 2p) 2 (8.9) 

x 

There will be a singularity at p~ when g(p~) = 1. The point p~ closest to the 
origin is then given by 

P~=2 \ x -  U 3 (8.10) 

At x =  1 (independent particles) p~= - o e  and the singularity causes no 
problems; but at x - - 4  one has p~ = -0.077, which means that the radius 
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of convergence of functions of the equilibrium density in the Ising model is 
very small. Since z = z(p) was used in the limit of internal equilibration, 
one finds that F(p) in (8.6) has a singularity at p~ given by (8.10). One 
likewise finds that the analog of (8.6) for the nonequilibrium case, con- 
structed from (4.4), also has a very small radius of convergence. Thus, the 
techniques described in our previous work that allow k~ to be estimated 
from the appropriate density series do not work at all in the Ising model 
except for x very close to unity. 

The behavior of k(s) as s ~ 1 in Fig. 2 suggests that dA/dt may be 
analytic in A about A = 0. If this is so, then one can write 

dA 
- - k ~ J [ l + G ( 3 ) ]  (8.11) 

dt 

If G(A) is analytic about A =0 ,  then the solution of (8.11) has the form 

which can be inverted, 

~Am Jm = e - k ~ '  (8.12) 
rn=l 

J =  ~ B . ( e - ~ ' )  " (8.13) 

If (8.13) is valid, then the eigenvalue spectrum for the infinite lattice should 
be given by 

2n=nkoo =n21 (8.14) 

To test this, the values of 21/21, 23/21 , ~-4/,~3, and /[4/23 a re  shown in 
Table IV for ring sizes varying from 2 to 9. The data are consistent with the 

Table IV, Ratios of Various Eigenvalues (k 1 the Smallest)  as a 
Function of Ring Size (N )  ~ 

M "2/~1 23/21 A4/~l ~4/23 

4 3.14 7.44 10.70 1.44 

5 2.66 5.81 7.94 1.37 

6 2.42 4.85 6.02 1.24 

7 2.29 4.30 4.95 1.15 

8 2.21 3.93 4.25 1.08 

9 2.16 3.66 3.81 1.04 

oo 2 3 3 1 

" T h e  d a t a  s h o w n  are  for  x = 4 a n d  ~ = 1. T h e  n u m b e r s  a t  N = oo are  specu la t i ons  b a s e d  o n  

a s m o o t h  e x t r a p o l a t i o n  of  the  d a t a  shown .  
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hypothesis that as N ~  one has 22=221, ,~3=321, and ;~3=;t4 (there 
seems to be a lot of clustering of the eigenvalues for large N, with the 
clusters centering around the values n2i). Our data are not extensive 
enough to prove (8.14), but it seems to be a reasonable speculation. 

Finally, we comment on the convergence of the time series themselves. 
Writing d(t) [Eq. (4.4)] as 

A(t)=~c~t" (8.15) 
n 

we can estimate the radius of convergence t~ of (8.15) from the ratios 

C n-  1 
t~ ~ (8.16) 

Cn 

As an example, for the case of x = 4  and ct= 1, A(t) is [-using the scaling 
of (4.11)] 

A = 1 - t +  (0.750) / 2 -  (0.792)t 3 + (0.995)t 4 -  (1.139)t 5 

+ (1.121)t 6 - (0.947) t 7 + (0.686)t 8 + ... (8.17) 

The consecutive ratios give the sequence of estimates of - t ~ :  1.33, 0.94, 
0.80, 0.87, 1.02, 1.18, and 1.38, which seem to indicate a singularity on the 
negative t axis at tq,,~--1. This could be misleading for the following 
reason. The function in (8.17) is, to a first approximation, very similar to 

1 
A(t) - (S.18) 

l + t  

which has a singularity at t~ = -1 .  Using (6.1) to define k(t), one finds that 
the function k(t) for (8.18) has the following variation with s [ = t / ( 1  + t)] 
for s = 0  to s =  1 in steps of 0.1:1.00 (1.00), 0.95 (0.93), 0.89 (0.85), 0.83 
(0.77), 0.69 (0.70), 0.61 (0.63), 0.52 (0.57), 0.40 (0.52), 0.26 (0.48), and 0.00 
(0.38), where the numbers in parentheses are the Pad6 approximants to 
k(s) defined by (8.17). The point is that in the early stages of the relaxation, 
s=0-0 .5 ,  (8.18) gives a good approximation to the actual function. As 
s ~ 0, the behavior is quite different: k(s) ~ 0 with a slope of minus infinity 
for (8.18), while k(s )~k~=0.38  for the Ising model, (8.87). Thus, 
although the function A(t) given by (8.17) may look like (8.18) for short 
times (the beginning terms in the series), at long times it becomes 
asymptotic to e x p ( - k ~  t), the relaxation having the form of (8.13), and 
hence from the later terms in the series one expects to find t~--, - ~ .  If 
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there is a singularity on the negative p axis close to the origin in the 
function t =  t (p),  then if t--, - o o  at this singularity, it follows that the t 
axis is free of singularities. 

APPENDIX 

In this Appendix we give the coefficients p(") in the series 

p ( t ) =  ~ p('~t ' /n!  (A1) 
n = l  

through n = 8 for the infinite lattice for three special cases: x = 1 and 
~:= 1/x  with general z, and z x =  1 with general ~c. The case z x =  1 
corresponds to a final density of 1/2. 

1. Special case x = 1. In this case the coefficients p~n) have the form 

p(m= ~ ~ auzix  j (12) 
i j 

The a,j for n = 1 to n = 8 are listed below: i is the column index, which 
begins with one and increases from left to right; j is the row index, which 
b e g i n s  w i t h  z e r o  a n d  i n c r e a s e s  d o w n  t he  page .  F o r  e x a m p l e ,  p(3) is 

p(3) = z + z 2 ( 6  - 4 x )  + z3( 11 - 12x + 2x  2) ( A 3 )  

We have 

n = l :  1 

n = 2 :  - 1  - 3  
2 

n = 3 : l  6 11 
- 4  - 1 2  

2 

n = 4 :  --1 - 9  - 3 5  
6 36 

- 4  

n =5:  t 12 76 
--8 --72 

2 

- 4 7  
70 

- 2 6  
4 

- 2  

216 
- 304 

102 
- 2 8  

18 

227 
- 424 

234 
- 4 8  

14 
- 4  

2 
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n = 6 :  - 1  - 1 5  -142  -646  -1413 -1215 
10 120 852 2496 2714 

12 --268 -1252 -1974 
152 288 572 

- 1 0  - 1 4 0  - 134 
4O 48 

- 2 4  - 14 
4 

- 2  

n = 7 :  1 18 249 1620 5523 9778 7107 
- 1 2  - 1 8 0  -1992 -9144  -20,660 -18,412 

- 5 4  660 4148 13,678 16,566 
- 7 1 2  -1312 -3712 -6360  

444 876 1286 1454 
-248  - 5 2 0  - 4 5 2  

172 198 134 
- 7 2  - 4 8  

30 14 
- 4  

2 

n = 8 :  - 1  - 2 1  - 4 2 9  -3741 -17,595 -47,999 -71,431 -44,959 
14 252 4290 27,000 94,882 175,164 132,206 

156 -1806 -11,136 -55,790 -144,088-141,434 
2956 5760 14,816 49,376 68,348 

- 1734 -4352 -7934 - 13,296 - 17,742 
1248 3264 5596 4680 

- 9 6 0  -1758 -2000 -1454 
760 840 452 

-262  -240  -134  
108 48 

- 3 6  - 14 
4 

- 2  

2. Spec ia l  case  x = 1Ix. I n  th i s  case  t he  coef f ic ien ts  p(") h a v e  t h e  f o r m  

PC') = Z Z aij z~ ( A 4 )  
1 j 

T h e  a U for  n = 1 to  n = 8 a re  l i s t ed  b e l o w ;  i is t h e  c o l u m n  index ,  w h i c h  

b e g i n s  w i t h  o n e  a n d  i n c r e a s e s  f r o m  left  t o  r i gh t ;  j is t he  r o w  index ,  w h i c h  

b e g i n s  w i t h  z e r o  a n d  i n c r e a s e s  d o w n  t he  page .  F o r  e x a m p l e ,  p(3) is 
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we have 

n = l :  ! 

n = 2 :  - 1  - 1  

n = 3 :  1 6 1 
- 4  

n = 4 :  - 1  - 1 1  - 2 5  - 1  
0 28 
8 - 6  

n = 5 :  1 16 78 90 1 
4 - 12 - 1 2 8  
0 - 9 8  42 

- 16 32 
6 

n = 6 :  - I  - 2 1  - 1 6 4  --454 - 3 1 0  - I  
- 8  - 5 2  168 488 
- 8  54 696 - 192 

0 296 - 4 3 2  
32 - 9 4  12 

- 4 4  
- 6  

n = 7 :  1 26 291 1370 2363 966 1 
12 172 320 --1416 - 1 6 9 2  
16 94 - 1 0 1 8  - 3 8 0 4  732 
16 - 1 2 8  - 2 9 2 8  3376 

0 - 8 7 0  2110 5040 
- 6 4  212 304 

182 - 138 
56 

6 

n = 8 :  - 1  - 3 1  - 4 7 5  --3323 -10 ,125  -11 ,457  - 3 0 2 5  - 1  
- 1 6  - 3 6 4  --1996 - 5 5 2  9360 5556 
- 2 4  --354 20 10,938 17,832 - 2 5 3 8  
- 3 2  - 2 9 6  3376 20,992 -20 ,400  
- 3 2  322 11,872 -25 ,410  4644 

0 2412 - 7 6 7 6  2592 
128 - 3 2 2  - 3 2 6 8  1530 

- 5 7 6  552 
- 2 9 4  408 

- 6 8  
- 6  

3. Special case z x  = 1. In this case the coefficients p(n) have the form 

p(~ = z ~ ~ ~, aux ix  j (A6) 
i j  
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The a 0 for n = 1 to n = 8 are listed below; i is the co lumn index, which 
begins with zero and  increases f rom left to right; j is the co lumn index, 
which begins with zero and increases down the page. Fo r  example,  ,0 (3) is 

p(3) = z3[11 + x(6 -- 1De) + x2(1 -- 2~c2)] (A7) 

We have 

n = l :  1 

n = 2 :  --3 - 1  
2 

n = 3 :  11 6 
- 1 2  

1 
0 

--2 

n = 4 :  --47 --35 --9 --1 0 
70 12 --2 0 

--2 --2 0 
16 0 

--6 - 2  

n = 5 :  227 216 76 
--424 -- 160 

9O 

n = 6 :  --1215 --1413 
2614 

n =  7: 7107 

12 1 0 0 
0 4 0 0  

16 6 0 0  
--80 0 0 0 

46 - 5 6  6 0 
2 0 0 0  
6 8 2 

--646 - 1 4 2  --15 
1580 216 --24 

--1058 --186 --54 
448 

-- 306 

- 1  0 0 0 
- 6  0 0 0 
- 6  0 0 0 

12 - 2 0  0 0 0 
214 - 5 0  - 1 0  0 0 

- 9 6  444 - 12 0 0 
- 4 6  - 3 0 2  - 3 4  - 1 0  0 

28 - 4  0 0 
- 6  - 1 4  - 1 0  - 2  

9778 5523 1620 249 18 1 
- 1 8 , 4 1 2  -14,448 -3576  -168  60 8 

10,354 2916 128 96 - 6  
-3196  - 2 9 6  472 4 

2030 - 2 7 6  272 176 
204 -2996  24 
306 2536 -1980  

- 4 8 4  1368 
46 

0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 
6 0 0 0 

40 0 0 0 
116 30 0 0 
- 8  28 0 0 

260 296 48 14 0 
- 1 4 8  - 1 2 4  - 1 6  0 0 

6 20 24 12 2 
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n=8:  -44,959 -71,431 -47,999 
132,206 130,404 

-96,674 

0 0 0 0 0 
0 0 0 0 0 
0 0 0 0 0 
0 0 0 0 0 

30 0 0 0 0 
- 3 2  0 0 0 0 

-290 - 6 6  0 0 0 
0 - 168 0 0 0 

-1472 -202 - 5 8  0 0 
76 76 - 4 8  0 0 

-460 -292 - 6 6  - 1 8  0 
636 304 40 0 0 

- 2 6  - 4 4  - 3 6  - 1 4  --2 

-17,595 -3741 -429 -21  - I  
45,674 5816 --102 - 108 - 10 

-41,422 - 1296 932 - 5 0  46 
28,812 3076 -4448 - 1576 152 

-13,922 -4662 28 -2992 14 
1940 17,084 2836 -740 

-2030 - 18,962 11,792 -2252 
5128 -8960 16,656 

-306 -2382 -16,252 
1900 2868 
- 4 6  -398 

412 
--6 
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